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The inertial waves excited in a uniformly rotating fluid passing through a long circular 
tube are studied numerically. The waves are excited either by a local deformation of the 
tube wall or by an obstacle located on the tube axis. When the flow is subcritical, i.e. 
when the phase and group velocity of the fastest wave mode in their long-wave limit 
are larger than the incoming axial flow velocity, the excited waves propagate upstream 
of the excited position. The non-resonant waves have many linear aspects, including 
the upstream-advancing speed of the wave and the coexisting lee wavelength. When the 
flow is critical (resonant), i.e. when the long-wave velocity is nearly equal to the axial 
flow velocity, the large-amplitude waves are resonantly excited. The time development 
of these waves is described well by the equation derived by Grimshaw & Yi (1993). The 
integro-differential equation, which describes the strongly nonlinear waves until the 
axial flow reversal occurs, can predict the onset time and position of the recirculation 
eddies observed in the solutions of the Navier-Stokes equations. The numerical results 
and the theory both show that the flow reversal most probably occurs on the tube axis 
and also when the waves are excited by a contraction of the tube wall. The structure 
of the recirculation eddies obtained in the solutions of the Navier-Stokes equations at 
Re = lo5 is similar to the axisymmetric or ‘bubble-type’ breakdown observed in the 
experiments of the vortex-breakdown which used a different non-uniform (Burgers- 
type) rotation. In uniformly rotating fluids the formation of the recirculation eddies 
has not been observed in the previous numerical studies of vortex breakdown where a 
straight tube was used and thus the inertial waves were not excited. This shows that the 
generation of the recirculation eddies in this study is genuinely explained by the 
topographically excited large-amplitude inertial ‘waves ’ and not by other ‘instability’ 
mechanisms. Since the wave cannot be excited in a straight tube even in the non- 
uniformly rotating flows, the generation mechanism of the recirculation eddies in this 
study is different from the previous numerical studies for the vortex breakdown. The 
occurrence of the recirculation eddies depends not only on the Froude number and the 
strength of the excitation source but also on the Reynolds number since the wave 
amplitude generally decreases by the viscous effects. Some relations to the experiments 
of vortex breakdown, which have been exclusively done for non-uniformly rotating 
fluids but done in a ‘non-uniform tube’, are discussed. The flow states, which are 
classified as supercritical, subcritical or critical in hydraulic terminology, changes along 
the flow when the upstream flow is near resonant conditions and a non-uniform tube 
is used. 

t Also Department of Mechanical Engineering, University of Tokyo, Hongo, Bunkyo-ku, 
Tokyo 113, Japan. 
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1. Introduction 
The flows of rotating fluids passing through a circular tube have been studied as one 

of the most fundamental problems in fluid mechanics (see figure 1). Among those the 
uniformly rotating (solid-body rotation) flow has been studied most extensively (see 
chapter 7 of Batchelor, 1967). When the azimuthal velocity is very large, a column of 
fluid, called a Taylor column, is pushed ahead of the obstacle placed on the tube axis 
(Taylor 1922). This occurs when the Rossby number Ro = U/SZa, defined by U the 
uniform axial velocity, SZ the uniform angular velocity and a the obstacle radius, 
satisfies Ro < 0.3. The phenomenon is essentially explained by the steady Euler 
equation and has little direct relation to the inertial waves. However, both the Taylor 
column and the inertial waves are observed in the same rotating fluid system and the 
only difference is that larger azimuthal velocity is necessary for the onset of the Taylor 
column compared to the excitation of the lowest-mode inertial wave. In this study, the 
main concern is in the inertial waves excited without the generation of the Taylor 
column. This means that the azimuthal velocity is large enough to support the inertial 
waves but small enough to avoid the generation of the Taylor column. 

It is well-known in the linear theory for the steady inertial wave (Batchelor 1967) that 
standing lee waves are formed downstream of the obstacle if the azimuthal velocity is 
large enough (cf. figure 2). The theoretical prediction of the wavelength in uniformly 
rotating fluids has been compared with the experiments by Long (1953) and Pritchard 
(1968) and good agreement has been obtained. At first sight, the usefulness of the linear 
theory seems to be clear when the flow is steady and has a uniform rotation, since the 
exact fully nonlinear governing equations become ‘ linear ’ without any linearization 
processes under the assumption of ‘no upstream influence’. However, the unsteady 
linear theory or the linear dispersion relation predicts that when the steady lee waves 
are formed, there is always a wave with longer wavelength which propagates upstream 
of the obstacle, invalidating the assumption of no upstream influence. This also shows 
that the flow is always subcritical to the excited lee-wave modes (Benjamin 1970; 
McIntyre 1972; Hanazaki 1989). The problem of upstream influence occurs also when 
the rotation is non-uniform, e.g. the Burgers-type rotation. In this study we assess this 
problem by comparing the numerical results with the linear theory. 

The solution by the linear theory diverges when the flow is critical (or resonant), i.e. 
when the phase and the group velocity of the linear wave in the long-wave limit is 
identical to the incoming axial flow velocity. In this case the wave energy of long-wave 
components accumulates near the obstacle and cannot propagate away from the 
obstacle (cf. figure 2b). Then the wave amplitude increases in proportion to the elapsed 
time, leading to the divergence of the linear solution in the long-time limit or in the 
steady state. 

In the general rotating flows the application of weakly nonlinear theories can avoid 
the divergence and describe the waves near resonant conditions. For the case with no 
topographic effects, Benjamin (1967) and Leibovich (1969, 1970) showed the possible 
existence of the solitary waves governed by the Korteweg-de Vries (KdV) equation. 
Leibovich & Randall (1973) extended it to an equation with a forcing term due to the 
deformation of the tube wall and solved it for some special initial and boundary 
conditions (Randall & Leibovich 1973). Grimshaw (1990) derived a similar equation 
but with a slightly different forcing term. The main difference from Leibovich & 
Randall’s equation was that the slow variation of the forcing in the axial direction was 
not assumed. The equation derived by Grimshaw (i.e. forced KdV equation) is 
identical in form to the equation recently derived and studied extensively in the similar 
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FIGURE 1. Schematical view of the flow geometry. 
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FIGURE 2. An illustration of the linear wave generation and propagation mechanism by an obstacle. 
These figures assume that Cp(k)  > Cy(k) ( k  =+ 0), 2Cp/ak < 0, c?Cy/c?k < 0 and C,(k = 0) = Cy(k = 0) 
as in the inertial waves in the uniformly rotating fluid. Similar phenomena occur in water waves and 
internal gravity waves. The three figures show the cases of (a) subcritical, ( b )  critical (resonant) and 
(c) supercritical upstream flows, respectively. 

contexts of the water waves (Wu 1981 ; Akylas 1984; Lee, Yates & Wu 1989) and the 
internal waves in stratified fluids (Grimshaw & Smyth 1986). It is now known that the 
equation is, in general, applicable to these problems except for the interfacial waves in 
two-layer fluids, where consideration of the higher-order nonlinearity is usually 
necessary (Melville & Helfrich 1987; Hanazaki 1992). Therefore we could anticipate 
that the weakly nonlinear waves excited in rotating flows would be generally described 
by the forced KdV equation. This has been verified by comparing its solution with the 
solution of the Navier-Stokes equations near resonant conditions for the Burgers-type 
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vortex (Hanazaki 199 1, 1993 a). The results agree in the appearance of the periodically 
generated upstream-advancing solitary waves, downstream flat depressions elongated 
with time and the further downstream-advancing lee waves. 

However, if the swirl has a uniform (i.e. solid-body) rotation, all the coefficients of 
the nonlinear terms of the KdV-type equations, i.e. AA,, MA, ,  vanish irrespective of 
the existence of the obstacle, and the nonlinearity cannot be described by the KdV-type 
equations (Grimshaw 1990). In general, this occurs when the fully nonlinear governing 
equations for steady state become ‘linear’ without any linearization processes. The 
same difficulty occurs in the linearly stratified Boussinesq fluid, which has been studied 
most extensively in the field of stratified flows. However, in that context Grimshaw & 
Yi (1991) derived a new type of integro-differential equation which describes the 
strongly nonlinear waves near resonance and Hanazaki (1993 b)  and recently Rottman, 
Broutman & Grimshaw (1996) compared its solution with the solution of the 
Navier-Stokes equations and showed that the equation is a quantitatively good 
approximation to the fully nonlinear equations, even predicting the onset of the flow 
reversal, i.e. the wave breaking. More recently Grimshaw & Yi (1993) derived the 
essentially same equation for the waves in a uniformly rotating fluid. The new 
equation, which hereinafter we call the Grimshaw-Yi (GY) equation, describes the 
strongly nonlinear waves and can describe large-amplitude waves until the axial flow 
reversal occurs. Therefore, we can expect that the GY equation predicts the onset of 
recirculation eddies in the uniformly rotating fluids whose origins are in the large- 
amplitude inertial waves, although it cannot describe the subsequent time development. 
Since the recirculation eddies in this study are generated by a large amplitude wave 
which occurs when the flow is near ‘resonant (critical) ’ conditions, our solutions for 
the unsteady flow show the ‘critical’ generation of the eddies. 

The main purpose of this paper is the investigation of the fundamental linear and 
nonlinear aspects of the waves excited in uniformly rotating flows and not the precise 
reproduction of the vortex breakdown phenomena which have been observed 
experimentally in rotating flows. However, it would be of interest to discuss how our 
results relate to those phenomena, since the experiments for the vortex breakdown 
have been done exclusively in a tube with a ‘non-uniform radius’ (Harvey 1962; 
Sarpkaya 1971 ; Faler & Leibovich 1977, 1978). They have been done sometimes in a 
tube with a local contraction (Kirkpatrick 1965; or see figure 6 of Hall 1972), which 
is similar to one of the tubes used in this study. Although the experiments have been 
done with a non-uniform rotation such as the Burgers-vortex type, if the ‘wave’ is the 
essential aspect of the vortex breakdown phenomena, the uniformly rotating flow also 
should contain the essential mechanisms of the vortex breakdown. The propagation 
mechanism of the wave is independent of the rotation type and is classified only by the 
hydraulic terminology, i.e. subcritical, critical and supercritical (cf. figure 2). In 
analogy with the hydraulic theory, Benjamin (1962, 1967) proposed the existence of the 
‘critical’ state in the steady flow, which separates the supercritical state upstream of the 
breakdown from the subcritical state downstream of the breakdown. This occurs when 
the upstream flow is near critical (resonant) condition and the tube radius becomes 
larger at a certain position so that the axial velocity becomes smaller in the downstream 
region. The diverging tube was actually used in the experiments by Sarpkaya (1971) 
and Faler & Leibovich (1977, 1978). The transition between the flow states in the 
hydraulic sense can be expected also in the flow with a tube deformation used in this 
study. For example, if there is a local contraction of the tube wall, a critical (resonant) 
upstream flow becomes slightly supercritical near the contraction and becomes critical 
again downstream of the contraction. 
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Numerical studies for the axisymmetric vortex breakdown was first done by 
Kopecky & Torrance (1973). They solved the steady Navier-Stokes equations with 
uniform axial velocity and with uniform (solid-body) or non-uniform (Burgers-vortex 
type) rotation, then reproduced the patterns of the axisymmetric vortex breakdown 
similar to the experiments only when the non-uniform rotation was used. They noticed 
that the breakdown occurs always at the upstream boundary of the computed region 
and the occurrence of the breakdown should affect the upstream boundary condition. 
They argued that the problem of ‘upstream influence’ (Benjamin 1970; McIntyre 1972) 
has to be assessed for our further understanding of the phenomena. 

Later numerical simulations for the vortex breakdown all report the recirculation 
eddies at the upstream boundary of the computed region irrespective of whether the 
flow is steady (e.g. Grabowski & Berger 1976; Beran 1987; Hafez et al. 1986, 1987; 
Salas & Kuruvila 1989) or unsteady (Menne 1988). To avoid this problem, Beran & 
Culick (1992) used a local contraction of the tube wall near the upstream boundary in 
their solutions of the steady Navier-Stokes equations, so that the breakdown occurs 
always downstream of the contraction. In a recent review paper, Leibovich (1991) 
showed a serious concern about the previous numerical studies in which the 
breakdown occurred always at the upstream boundary of the tube, violating the 
upstream boundary conditions. 

It is important to note that Kopecky & Torrance (1973, p. 291) did not observe the 
vortex breakdown in the case of the uniform rotation even when they changed 
substantially the upstream axial and swirl velocity. This shows that the vortex 
breakdown does not occur in a straight tube when the flow has a uniform rotation. 
Since the inertial waves cannot be excited in a straight tube irrespective of the rotation 
type, their results suggests that the vortex breakdowns observed in the non-uniform 
rotations in previous numerical simulations do not have their origin in the waves, 
although the generated disturbances by some other mechanisms, such as the 
instabilities, might be advected by the waves. Leibovich (1991) argued also the 
possibility of the upstream propagation of the disturbances generated at the 
downstream end of the computed region when the flow is subcritical, although this was 
not observed in this study in which a very long tube was used. 

In this study we consider the inertial waves in a uniformly rotating fluid excited by 
the deformed tube or an obstacle. We consider the subcritical, critical (resonant) and 
supercritical upstream flows whose classifications depend on the ratio of the azimuthal 
flow velocity to the axial flow velocity. In the case of subcritical flows the problem of 
‘upstream influence’ is investigated here as a phenomenon of the wave propagation. 
When the flow is near resonance and the wave amplitude becomes large, the axial flow 
reversal or the generation of recirculation eddies occur. The generation mechanism of 
the recirculation eddies is in the ‘waves’ excited by the boundary deformation and 
would be different from the previous numerical studies of the vortex breakdown. This 
does not mean that our results have no relation to the experiments of the vortex 
breakdown if the essential aspects are in the ‘non-uniform tube’ or the ‘waves’ and not 
in the non-uniform rotation. The investigation of the applicability of the Grimshaw-Yi 
equation near resonant conditions is important since it can describe the large- 
amplitude waves leading to the axial flow reversal and the recirculation eddies. We 
should note that in the previous numerical studies of the vortex breakdown, direct 
comparisons with the theories have not been done so that the mechanisms of the 
breakdown have remained largely unknown. This study is a test of one mechanism, i.e. 
the generation of the recirculation eddies by the large-amplitude ‘ inertial waves’ 
excited near the critical (resonant) conditions in the hydraulic sense. 
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In $2 we review the linear theory and the GY equation. In $93 we describe the 
numerical method. In 994 and 5 ,  the results and the conclusions are given. 

2. Review of the theory 
We consider the inertial waves excited either by an obstacle on the tube axis or by 

a local deformation of the tube wall (figure 1). Throughout this paper, we consider the 
flow with a uniform axial velocity and a uniform (solid-body) rotation at the inflow 
boundary. In this section we first review the linear theory and then review and discuss 
the important aspects of the Grimshaw-Yi equation. 

First, we describe the governing equations. All the quantities hereinafter are non- 
dimensionalized by the tube radius b, and the uniform axial velocity at the inflow 
boundary U, unless otherwise stated. Then using the Reynolds number defined by 
Re = Ub/v (1’ = the kinematic viscosity coefficient), the governing equations for the 
unsteady axisymmetric flow of incompressible fluid (figure 1) are written in cylindrical 
coordinates as 

Su 1 c?(rzl) -+-- 
ax r ar 

= 0, 

where u, v and MI are the axial, radial and azimuthal velocities of the fluid, p is the 
pressure and V2 is defined by 

The momentum equation for the azimuthal velocity ( l c )  can be rewritten as an 
equation for the circulation r( = r w )  : 

with 

This represents the piecewise conservation of the circulation r if there is no viscosity 
(Re = 00) or if the condition 

2 a(rw) 
r ar 

V2(rw) - - -  = 0, 

is satisfied. 
In the incompressible stratified flows, density is conserved if there is no diffusivity of 

density and we can consider the circulation r as the counterpart of it. It should be 
noted that (2c) holds when the flow has a uniform (solid-body) rotation, i.e. when the 
azimuthal velocity is given by w = rSZ, where SZ (= const) is a uniform angular velocity. 
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Note that V2w-w/r2 in the right-hand side of ( l c )  also vanishes in this case. These 
facts show that the effects of the viscosity in the azimuthal direction becomes ineffective 
if the flow has a uniform rotation. The circulation is then piecewise conserved even 
when there is a viscosity of the fluid. If in addition the flow is steady, the contours of 
the circulation coincide with the Stokes streamlines. 

In this study the rotation is approximately uniform except where the large-amplitude 
waves appear and at the same time the Reynolds number is generally large (Re = lo4). 
In addition the time development of the flow is generally slow except the inside of the 
recirculation eddies. Therefore we can use the difference between the contours of 
circulation and the streamlines as a measure of the unsteadiness and the non- 
uniformness of the rotation in the recirculation region. 

2.1. Linear theory 
We first review the linear theory. To clarify the physical meanings of the expressions, 
dimensional quantities are used only in this subsection (92.1). When the flow has a 
uniform rotation, the stream function @(x, r ,  t )  can be written as (Batchelor 1967) 

+1u r2 + Bflr) sin [k(x + C,  t)], (3 a) 

where B is an arbitrary constant, C ,  is the axial phase velocity of the inertial wave and 
k is the axial wavenumber. The function f ( r )  is given by 

f ( r )  = rJ, { r$ - k2)'"r} , 

where J1 is the Bessel function of the first kind of order one. 
Since f i r )  satisfies f lb )  = 0, the phase velocity C, has to satisfy 

2bQ 
= 0 + b2k2)1/2 ' (4) 

where jn (n  = 1,2,  . . .) are the nth zeros of J, (r ) .  This determines the linear dispersion 
relation w = C,  k ,  then the group velocity C, ( = c?w/ak) becomes 

J n  c, = c, . 2  j n + b 2 k 2 '  

showing that C,  > C, holds always when k =I= 0. 

wave limit (k  = 0), giving 
The expressions (4) and ( 5 )  show that both C,  and C, become maximum in the long- 

2bQ 
C ,  C,(k = 0)  = C,(k = 0)  = y.  

J n  

Since this value becomes smaller with the increase of n, the fastest wave is the mode 
n = 1 wave of infinite wavelength ( k  = 0) whose velocity is C,  = 2bQ/j,. If C, > U,  this 
fastest wave propagates upstream of its excited position at a speed of C, - U (see figure 
2a). For the criterion of the appearance of the upstream advancing wave, we use here 
the Froude number F determined by 

Then if F < 1 ,  the flow is subcritical to the mode n = 1 and there is an upstream 
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propagation of the linear wave, while if F > 1, the flow is supercritical to all the modes 
and no upstream propagation occurs. If F = 1, the flow is resonant since the long-wave 
components of the mode 1 wave cannot propagate away from the excited position and 
the wave energy accumulates there proportional to time (figure 2 b). Then the linear 
time-dependent solution or the solution for the steady state diverges. For this case the 
amplitude becomes large anyway and we have to consider nonlinear effects. More 
generally, if C, = U the flow is resonant to mode n and this resonant mode would have 
the largest amplitude. As is well known in the contexts of the water waves or the 
internal gravity waves, the standing wave such as the ship wave or  the mountain lee 
wave has the wavenumber k, which satisfies C,(k,) = U,  which means that the phase 
of the wave does not move against the topography. Since C, > C, and thus 
U = C,(k,) > C,(k,) holds for most of the familiar wave systems, the wave energy of 
the lee waves is swept downstream, exemplifying that standing waves always appear 
downstream of the excited position (cf. figure ?a). In the case of the uniformly 
rotating flow, the wavelength A, (= 2n/k,)  is given by 

2xb 
112' A, = 

It is important here to note that 

C,(k = 0)  = C,(k = 0) > C,(k,). (9) 

This shows that, when there is a standing wave (C,(k,) = U ) ,  the long waves (k  = 0) 
of the same mode always propagate upstream. In other words, lee waves and the 
upstream advancing waves of the same mode n must always coexist. 

If the Froude number F is near 1 (but F < l) ,  only the mode n = 1 components 
propagate upstream and only the mode n = 1 lee waves exist. The criterion for the 
generation of the upstream and downstream waves, i.e. C, > U,  can be rewritten as 
U/bQ < 2/ j ,  = 0.522 and we note that even if U/bQ = 0.522, the Rossby number Ro 
satisfies Ro = U/aQ > 0.522 > 0.3 because the radius of the obstacle must be smaller 
than the tube radius (a < b).  This shows that there must be a state with the upstream 
and the downstream waves but without the generation of the Taylor column. In this 
study we consider only this case as noted in the introduction. 

2.2. Grimshau-Yi ( G  Y )  equation 
Near resonant conditions (C, = U )  the solutions by the linear theory diverge and we 
have to develop the nonlinear theories which will treat the resonant growth of the 
inertial wave. If the rotation is non-uniform as in the Burgers-vortex type rotation, we 
can derive the KdV-type equations (e.g. the forced KdV equation; Grimshaw 1990). 
However, an important point to note here is that all the coefficients of the nonlinear 
terms in the KdV-type equations (i.e. the coefficients of AA,, A 2 A ~ y )  vanish when the 
rotation is uniform (solid-body rotation). In general, this occurs when the inviscid and 
steady form of the original fully nonlinear governing equations becomes linear without 
any linearization processes (Appendix to Grimshaw 1990). Grimshaw & Yi (1993) 
derived a new type of integro-differential equation which describes the nonlinearity of 
the waves in this particular but typical and important case. For the derivation of the 
G Y  equation, we assume that the resonant nth mode is dominant and decompose the 
stream function as 

0 0 a )  $b = i t - 2  + A,(X,  T)f,(r) + t$bl + 0(e2),  
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where f , ( r )  = rJICjn r ) ,  (lob) 

is identical to (3b). The second term on the right-hand side of (10a) denotes the O(1) 
(strongly nonlinear) correction to the undisturbed uniform axial velocity and the GY 
equation describes the time-development of A,(X,  T) .  In the derivation of the GY 
equation, the scalings of the axial coordinates and the time are the same as in the 
derivation of the forced KdV equation, i.e. 

X = $ I 2 x ,  T = P t ,  (1 1) 

where e = (b/L)2 is the square of the ratio of the tube radius to the typical axial 
wavelength L. The scaling for the amplitude of the boundary deformation is different 
from the forced KdV equation. It is given by 

r = €1Izg(x), ( 1 2 4  

or r = 1 +.cg(x’), (12b) 
according to whether the obstacle is on the tube axis or there is a local undulation of 
the tube wall. 

If the flow is near resonance, i.e. C, = 1 --€A, the GY equation for A = A,(X,  T )  is 

when there is an obstacle on the tube axis or 

t13b) 
when there is an undulation of the tube wall. 

Here, R is given by (6) (Q = :ja and I,, A’ and K(A,A’) are defined by 

I n  = :JiG,), A’ = A’(X’, T) ,  
and 

Note that a new variable $ = $(r ,A)  is introduced, which is defined by 

$ = iCa y 2  + A(X,  T).f,(r), (15) 

and is used as an independent variable instead of r .  For the existence of the inverse 
r = r($, A) ,  the condition 

A dfa = c,+-- * 0, 
r r dr 

must be satisfied for all r(0 < r < 1 )  by virtue of the implicit function theorem. Using 
(lob), this is equivalent to 

/- 
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- or 

where J,( j ,) = -0.40276. (The upper bound of A given by Grimshaw & Yi (1993) (see 
their (3.25)) is Cn/jn,  or, more precisely, they used Cl/ ( j l  lJ,,(jl)l) for the first ( n  = 1)  
mode. For the general nth mode, it is replaced by Cn/( jn  ~J,fj,)~) and becomes about 
2.5 times larger compared to Cn/jn.> By comparison of (15) with (lOa), we see that 4 
given by (15) is equal to the total stream function with an error of O(t.). Then, (16a, b)  
or (16c) is approximately identical to the condition for the absence of the axial flow 
reversal. We should note that, in (16c), the violation of the lower limit of A leads to 
the axial flow reversal on the tube axis (Y = 0), while the violation of the upper limit 
of A leads to the axial flow reversal at r = j l / jn ,  which corresponds to the tube wall 
( r  = 1) for the first radial mode (n = 1). Since the modulus of Cn/( jn  lJ,,(jl)l) is about 
2.5 times larger than that of - Cn/jn,  we can expect that the axial flow reversal is most 
likely to occur at the tube axis when the A becomes smaller than -Cn/jn. Finally, it 
is of interest to note that the forcing term in (1 3 a )  vanishes when A reaches the lower 
limit of (16c). Even if A does not reach the lower limit, the forcing term becomes 
smaller with the reduction of A ( < 0). Similarly, the forcing term in (1 3 b)  vanishes for 
mode n = 1 when A reaches the upper limit of (16c). Even A does not reach the upper 
bound, the forcing term becomes smaller with the growth of A( > 0). These show that 
the time development of the wave becomes much slower as the amplitude reaches the 
breaking point, i.e. as the flow reversal is approached. This also suggests that after the 
flow reversal occurs, the wave amplitude does not change significantly in the region 
where the flow reversal has occurred. 

3. Numerical method 
We calculate the flow in the region of -40 ,< x < 60 and 0 ,< Y < 1, with the 

deformation of the boundary localized near x = 0. The numerical method is the same 
as in the previous papers (Hanazaki 199 1, 1993 a) and is summarized in the Appendix. 
However, some discussions about the boundary conditions are appropriate here. In 
this study, free-slip condition is generally used on both the obstacle surface and the 
tube wall to exclude the effect of the boundary layer. An exception is the boundary 
condition for the azimuthal velocity w on the tube wall, where the condition of a 
‘rotating tube’: w = rS2, with r the radius of the tube taken account of the deformation 
of the tube wall, was used. 

In the previous numerical studies for the vortex breakdown, free-slip boundary 
conditions were often used for the axial velocity u. The constant azimuthal velocity w 
based on the conservation of circulation T( = rw = 52) along the straight tube wall was 
also often used (e.g. Kopecky & Torrance 1973) on the assumption that the decrease 
of circulation along the tube wall owing to viscosity is negligible. Those simulations 
were done for the Burgers-vortex type rotation and the azimuthal velocity w on the 
tube wall was in general not large, because in that case the azimuthal velocity decreases 
proportional to Y-’, where Y is large. Then the differences from the laboratory 
experiments which exclusively used the non-rotating tube (no-slip conditions) were 
thought to be small. The differences which come from the free-slip conditions for u (and 
2)) would be also small as tested by Kopecky & Torrance (1973). 

In the case of the uniform (solid-body) rotation the azimuthal velocity increases in 
proportion to Y, i.e. the distance from the tube axis. However, in the previous 
experiments for the uniform (solid-body) rotation, the tube wall has been always 
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‘rotated’ with the angular velocity 52 because the rotation is necessary for the 
generation of the ‘uniformly’ rotating fluid (Long 1953; Pritchard 1968, 1969). 
Therefore, the boundary condition for the azimuthal velocity in the experiments is 
w = r52, exactly the one used in this numerical study. We note here that, although we 
did not use the free-slip conditions, our tests showed that the free-slip condition for the 
azimuthal velocity on the tube wall makes only negligible differences to the solution. 
The circulation on the tube wall (r = rw = 52) is conserved if the viscosity effect is 
negligible or if the rotation is uniform (see equation (3a)),  then the value of u’ at the 
upstream end of the tube wall M-’ = 1 x 52 is only slightly changed along the tube wall 
as far as the deformation of the tube wall is small. 

The experiments for the uniform rotation have been carried out by moving the 
obstacle along the tube axis, which means that the boundary condition on the tube wall 
is (u, t i )  = (U ,  0) if we look at the velocities from the moving (obstacle) frame. This 
condition is more similar to the free-slip condition than the no-slip condition except 
when the wave amplitude is extremely large and the flow reversal occurs on the tube 
wall. But this would rarely occur. Then the use of the free-slip conditions for u and u 
is reasonable also from this point of view. 

Note also that there is an inconsistency in the boundary condition at the upstream 
end of the tube wall if we use the no-slip condition, since the boundary condition at 
the inflow gives u = U,  MI = 652, while the no-slip condition on the tube wall gives 
u = MI = 0. This is one of the reasons why in the previous numerical studies, free-slip 
boundary conditions have been used (Kopecky & Torrance, 1973). 

When there is an obstacle on the tube axis, the boundary conditions on the obstacle 
also become problematic. We have used in this study the free-slip conditions. This 
would cause some quantitative differences from the laboratory experiments which used 
a non-rotating obstacle. However, in the experiments of Pritchard (1968, 1969) the 
sphere on the tube axis was also rotated with the angular velocity 52, the same angular 
velocity as the tube wall. This was done to suppress the development of the Ekman 
boundary layer on the sphere surface. The purpose of the previous experiments and 
this study is ‘not’ in the study of the boundary-layer development which would 
obscure the essential mechanisms of the inertial waves. So we have used the free-slip 
boundary condition on the obstacle surface. Indeed, the use of the free-slip conditions 
in this study has given the distributions of azimuthal velocity on the obstacle surface 
much more similar to the rotating obstacle than the non-rotating obstacle. This is the 
reason why Pritchard (1968, 1969) could avoid the development of the boundary layer 
in his experiments by rotating the sphere. We should also note that, if the circulation 
r = rw is approximately conserved because the Reynolds number is large and the flow 
has relatively uniform rotation, r = 0 on the obstacle surface. This is because the 
contour of r on the obstacle surface originates from the tube axis (r  = 0) in the more 
upstream region. In the experiments of Taylor (1922), the rotation of a light sphere, 
which was allowed to rotate freely, was negligible except when the Taylor column 
exists. If there is a Taylor column, it forms a closed streamline and a flow separation 
occurs on the obstacle surface, allowing that the contour of r does not necessarily 
originate from the tube axis. Then the rotation of the sphere becomes much faster (see 
Batchelor 1967, p. 565) if the Taylor column exists. The azimuthal velocity on the 
obstacle surface is originally small if the fluid rotation is not fast and the Taylor column 
does not exists. We can also consider the free-slip condition for the azimuthal velocity 
as identical to the condition that the light obstacle is allowed to rotate freely. 

We still have to admit that the use of the free-slip condition for u and u on the 
obstacle surface gives quantitative differences in the solution from the experiments 
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where the no-slip conditions are applied. However, Pritchard reports that the 
boundary-layer development was sufficiently suppressed only by rotating the sphere, 
showing that the effect of the boundary layer generated by the no-slip conditions for 
u and D was small. 

We have used in this study either the obstacle located on the tube axis whose shape 
is given by 

or the deformation of the tube wall given by 

rin = 0.05 sech2(0.4x), (174 

rout = 1 + h sech2(0.4x), (17b) 

with h being the maximum radial amplitude of the tube wall deformation whose sign 
denotes the expansion or the contraction. Specifically h was +0.005, -0.005 or 
-0.015. An exception is the use of the short obstacle on the tube axis whose shape is 
given by 

This short obstacle was used for the calculations of the subcritical flows, since the long 
obstacle did not excite lee waves of short wavelength and became inconvenient to 
identify the lee wavelength for comparison with the previous laboratory experiments. 

The Reynolds number is Re = lo4 unless otherwise stated. This value is used to 
avoid the strong viscous damping of the inertial waves. As has been discussed in the 
previous paper (Hanazaki 1993a), we have tested the cases of various Reynolds 
numbers and found that, above Re = 5000, the generation period of the upstream- 
advancing waves in the critical and subcritical flows in non-uniformly rotating 
(Burgers-type vortex) flows are almost independent of the Reynolds number. 

The Froude number F is below F = 1.05, so that the flow is near resonance or 
subcritical to the fastest (lowest) mode ( n  = 1). We investigate mainly the flow near 
F = 1, for which the wave of mode n = 1 is near resonance. For comparison with the 
linear theories and the previous experiments for the inertial waves, the upstream wave 
propagation speed and the lee wavelength in the subcritical flow (0.5 < F < 0.9) were 
also investigated. 

rin = 0.05 ~ech~(4.u). (174 

The boundary conditions at the upstream boundary are 

u =  1, u = O ,  w = r Q ,  (184 

and the boundary conditions on the downstream boundary are 

av av 
a t  a . ~  -+u- = 0. 

Since the upstream boundary conditions are fixed, the computation can be done only 
until the upstream-advancing waves reach the upstream boundary. This limitation can 
be predicted by linear theory, i.e. using the upstream propagation speed of the fastest 
(n = 1) mode in its long-wave limit (k  = 0): 

1 
F 

c -1  =--1.  1 

However, we should note that the tube length (= 100) in this study is much longer 
compared to the previous numerical studies for the vortex breakdown where it was 
usually about 3-10. Therefore, the effect of the upstream influence is completely 
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avoided near the upstream boundary as far as the waves do not reach the upstream 
boundary. Then the setting of the fixed boundary conditions does not make any 
difference to the solution obtained by other boundary conditions, e.g. the ones which 
set the axial derivatives to be zero (c?u/Ss = 0) at the upstream boundary. 

To compare the solutions of the Navier-Stokes equations with the theory, the GY 
equation was solved by the same method as used in Hanazaki (1992, 1993b), which is 
the finite-difference analogue of the spectral method used by Yi & Warn (1987). 

4. Results 
We first show the solutions of the Navier-Stokes equations for the flow past an 

obstacle on the tube axis. The obstacle shape is given by equation (17a). In figure 3 ,  
we show the Stokes streamlines in the whole computed region at the last stage ( t  = 200) 
of the time development. Note that the axial length is 1/100 of the radial length. When 
F = 0.9 ( F  < 1, i.e. C, > 1) (figure 3a), the phase and the group velocity of the mode 
n = 1 wave in their long-wave limit is larger than the axial flow velocity. Then the 
upstream-advancing long waves appear and their propagation speed is given by (19) as 
0.1 11. When t = 200 this gives the foremost position of the upstream wave as 22.2, in 
agreement with figure 3(a) (cf. figures 4a and 5a). At this Froude number the flow is 
slightly subcritical and the amplitudes of the upstream and the downstream waves are 
not very large. When F = 0.95 (figure 3b), the flow is still slightly subcritical but 
becomes nearly resonant. Then the wave amplitude becomes largest among all the 
Froude numbers used in this study. The advancing speed of the upstream waves 
becomes slower owing to the reduction in the linear long-wave speed. When t = 200, 
equation (19) predicts the position of the foremost wave as 0.0526 x 200 = 10.526, 
which is in agreement with figure 3(b) (cf. figures 4b  and 5b). In the case of F = 1.0 
(figure 3c), the upstream flow is exactly resonant to the first inertial-wave mode (n  = 1) 
and the solutions of the linearized equation diverge. In this case there is no upstream 
propagation of the inertial waves. This confirms that the nonlinear correction of the 
wave speed in the uniformly rotating fluid is very small as has been shown in Hanazaki 
(1991). It will take an indefinitely long time even if we could identify some upstream 
influence of the obstacle. When F = 1.05 ( F  > 1, i.e. C, < 1) (figure 3 4 ,  the flow 
becomes supercritical to all the modes with no upstream waves and only weak 
downstream waves. 

To see the time development of the inertial waves clearly, it is appropriate to 
calculate the amplitude of the mode n = 1 component of the wave which corresponds 
to the solution of the GY equation. We have computed the amplitude of the nth mode 
A,(x,  t) by the following method. We first assume that the total stream function can be 
written as (10a). Then using the orthogonality condition for the Bessel function of the 
first kind of order one: 

(20a)  

A,(x,  t) is calculated approximately as 

with an error of O ( E ) .  By substituting n = 1 into (20b) ,  the first mode component 
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obtained by the solution of the Navier-Stokes 
equations (Re  = lo4)). The waves are excited by an obstacle on the tube axis whose shape is given by 
(17a). The streamlines are drawn for $ = 3.125 x x n2 (0 < n < 40): ( a )  F = 0.9; ( b )  F = 0.95; ( c )  
F =  1.0; ( d )  F = 1.05. The vertical lines in ( a )  and (6) show the position of the foremost wave 
predicted by the linear theory (19). 

A,(.x, t )  is obtained. The result is shown in figure 4, where the sign of the amplitude 
A ( s ,  t )  = A, (x ,  t )  is reversed. 

We see in figure 4 that upstream advancing waves appear only when F < 1 (C,  > l), 
although there is a growing wave near the obstacle ( x  z 0) when F = 0.95 and F = 1 .O. 
When F = 1.05, the wave near the obstacle becomes steady and the wave amplitude 
does not grow after the amplitude has reached a constant value. In this case there is 
a depression just downstream of the obstacle which becomes longer with time. We see 
in figures 4 ( a )  and 4(6 )  that the foremost end of the upstream wave, which has the long 
wavelength (k = 0), propagates almost at a constant speed from x = 0 as predicted by 
the linear theory (19). 

The results described above show that the nonlinear correction of the linear wave 
speed is very small if the flow has a uniform rotation. This is very different from the 
resonant solutions for non-uniform (Burgers-vortex type) rotation (Hanazaki 1991, 
1993a), where definite increase of the propagation speed of the upstream waves 
owing to the nonlinearity was found. In that case there is an additional speed 
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FIGURE 4. Time development of A = A,(.u, t )  obtained from the solution of the Navier-Stokes 
equations ( R e  = lo4). The waves are excited by an obstacle on the tube axis (17a):  (a) F = 0.9; (b)  
F = 0.95; ( c )  F = 1.0; ( d )  F = 1.05. Note that the sign of A is reversed in this figure. The straight lines 
in (a)  and ( 6 )  show the position of the foremost wave predicted by the linear theory (19). 

proportional to the amplitude of the upstream solitary wave and the upstream 
influence was found even when the Froude number is F = 1.1 (> 1). 

The wavelength A, of the standing lee waves downstream of the obstacle can also be 
predicted by the linear theory (8). For the first mode (n  = 1, C,/U = l /F, j l  = 3.831 71) 
this gives A, = 3.39 when F = 0.9, and A, = 4.98 when F = 0.95. These values agree 
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FIGURE 5. Time development of A ( x ,  t j  obtained from the solution of the GY equation. The waves 
are excited by an obstacle on the tube axis (17a): (a )  F = 0.9; ( 6 )  F = 0.95; (cj I; = 1.0; ( d )  F = 1.05. 
The straight lines in (a) and (b) show the position of the foremost wave predicted by the linear 
theory ( 19). 

with figures 3(a ,b)  and 4(a,b).  It is of interest that the linear theory can predict the 
wave speed and the wavelength without large errors even when the Froude number is 
close to one, although the solution of the linearized equation diverges and we cannot 
obtain the non-divergent solution when F = 1.0. 

In figure 5 we show the solutions of the Grimshaw-Yi equation which correspond 
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FIGURE 6. Time development of the first mode A = A, (x ,  t )  obtained from the solution of the 
Navier-Stokes equations for subcritical ( F  < 1) flows (Re = lo4). The waves are excited by a 'short' 
obstacle on the tube axis (17c): (a)  F = 0.9; (b)  F = 0.8; ( c )  F = 0.546 17. The straight lines show the 
position of the foremost wave predicted by the linear theory (19). 

to figure 4. In this study, the value of 6 is set to be 6 = 0.01 in all the solutions of the 
Grimshaw-Yi equation. The qualitative agreement in the dependence on the Froude 
number is very good. The agreement is good even quantitatively, except that in the 
solutions of the Navier-Stokes equations (figure 4), the amplitude of the far 
downstream waves (x 2 20) are smaller owing to the viscosity of the fluid, and the 
amplitude near the obstacle is also smaller. A typical feature of the subcritical flow is 
the initial upstream-propagation of the standing downstream waves, which was first 
observed in the flow of a linearly stratified Boussinesq fluid (Grimshaw & Yi 1991 ; 
Hanazaki 19933). This is observed when F = 0.9 (figure 5a), where we see the initial 
(0 < t < 100) slight upstream movement of the downstream waves (0 < x < 10). This 
can be also identified in the corresponding solution of the Navier-Stokes equations 
(figure 4n). 

To clarify the applicability of the linear theory to the subcritical flows, the 
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Navier-Stokes equations for lower Froude numbers were solved. In figure 6, the time 
developments of the amplitude of mode n = 1 are presented for F =  0.9, 0.8 and 
0.546 17. In the case of F = 0.546 17, the second mode n = 2 is at resonance. A short 
obstacle given by (17c) is used here instead of (17a). The axial length of the obstacle 
is then one tenth of ( 1 7 ~ ) .  If the long obstacle (17a) is used, the wave components of 
short wavelength are very weakly excited because only the wavenumber components 
which exist in the Fourier transformed spectrum of the obstacle shape can be excited, 
at least under the assumption of the linearity of the wave (McIntyre 1972). Indeed, if 
the Froude number becomes small ( F  0.6) and the lee wavelength becomes short, it 
becomes difficult to identify the lee wavelength for comparison with the linear theory 
if we use (17a) as the obstacle. Even in the case of F = 0.9, where the Froude number 
is still near one and the lee wavelength is not very short ( A ,  = 3.39), the lee wave 
amplitude in figure 4(a), which used a long obstacle (17a), is much smaller than that 
in figure 6(a), where a short obstacle (17c) is used. The same is true of the difference 
in the wavenumber components of the upstream wave. The amplitude of the upstream 
wave is similar in figures 4(a) and 6 ( a )  ( F  = 0.9) because the upstream waves generated 
early have long wavelengths. However, as the Froude number decreases and the 
shorter waves begin to propagate upstream earlier as shown in figure 6(c) 
( F  = 0.546 17), differences in the upstream wave also become much larger because the 
long obstacle (17a) cannot excite ‘short’ upstream waves and the generation of the 
upstream waves almost ceases much earlier compared to figure 6(c). Therefore, we 
have used here a short obstacle given by (17c) to clarify the effect of the short waves. 

The upstream-advancing speeds of the foremost long ( k  = 0) wave of mode n = 1 
agree with the linear theory (19). The predicted speed is 0.11 1 when F = 0.9,0.25 when 
F = 0.8 and 0.831 when F = 0.546 17. These are shown in figure 6 as straight lines. 

If is of interest to note that the ‘shortest’ wavelength in the upstream wave 
A, (=  2x/k , )  (see figure 2a) can also be predicted by the linear theory. It is determined 
by the condition that the axial group velocity is equal to the axial flow velocity: 

(21a) 

Rewriting (21 a)  using the Froude number Fdefined by (6) and (7), the limit wavelength 
A, is obtained as 

(21 b) 

This gives A, = 6.08 when F = 0.9, A, = 4.09 when F = 0.8 and A,, = 2.33 when 
F = 0.546 17. The wavelengths of the shortest upstream waves indeed approach these 
limit values in figure 6. 

Note that the amplitude of the upstream wave is generally small in figure 6 compared 
to the lee wave since the short obstacle excites mainly the waves of short wavelength, 
which can appear as the large-amplitude lee waves but cannot appear initially in the 
upstream waves. This is one of the reasons why in the laboratory experiments by Long 
(1953) upstream waves were not observed. In his experiments the obstacle length is 
comparable to the tube radius. In that case, long wavelength components, which 
should appear earlier in the upstream region, become small. To identify the small- 
amplitude waves, other experimental methods have to be used as was done in a similar 
dynamical system of stratified flows. In stratified flows, the visualization of the 
‘disturbance streamlines ’ of the whole field, which was originally quiescent, was 
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FIGURE 7. Time development of the second mode A = A, (x ,  t )  obtained from the solution of the 
Navier-Stokes equations for subcritical ( F  < 1) flows (Re  = lo4). The waves are excited by a ‘short’ 
obstacle on the tube axis (17c): (a) F = 0.9; (b )  F = 0.546 17. 

carried out by Baines (1979) and the measurement of the upstream disturbance velocity 
was made by Castro & Snyder (1988). 

We next show the effect of the second (n  = 2) mode when F d 1. The amplitude of 
the second mode A = A,(x,  t )  was calculated using (20b) with n = 2. The results 
are shown for F = 0.9 and F= 0.54617 in figure 7. Note that the condition 
F = U / C ,  = UjJ2bQ = 0.54617 is identical to C, = 2bQ/j, = U (j2 = 7.01559), i.e. 
the resonant condition of the second mode. Then, if the Froude number is F = 0.9, the 
flow is supercritical to the second mode and thus A ,  is not excited at all in figure 7(a) 
except that the components of the ‘obstacle shape’ appear very near the obstacle 
(x z 0). On the other hand, if F = 0.546 17, the flow is critical (resonant) to the second 
mode and a large A ,  is excited near the obstacle (figure 7b). The resonant wave patterns 
of mode n = 2 shown in figure 7(b) are similar to the resonant profiles of mode n = 1 
shown in figure 4(c), although the wavelength is shorter in figure 7(b). 

To summarize the dependence of the lee wavelength of mode n = 1 components on 
U/Qb (= 2F/j, = 0.522F), the wavelengths obtained from the solution of the 
Navier-Stokes equations are shown in figure 8. The computational results for F = 0.7, 
0.6 and 0.5 are also included here and the comparisons are made with the experiments 
by Long (1953) and Pritchard (1968, 1969) and also with the linear theory (8). The 
agreement is generally good except that the numerical results give slightly longer 
wavelengths compared to the linear theory. 

We next consider the waves excited by a local contraction of the tube wall. Here, we 
have used the contraction shape given by (1 7 b) with h, = - 0.005. In figure 9, we show 
the overall streamlines when F = 0.95 ( t  = 200). Note here that even a very small 
undulation of the wall (in this case, only 0.5 % of the tube radius) causes a wave of very 
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FIGURE 8. Comparison of the lee wavelength. The solutions of the Navier-Stokes equations: 0,  the 
experiments by Long (1953): 0, the experiments by Pritchard (1968); a, (sphere radius/tube 
radius = 0.275); 0, (sphere radius/tube radius = 0.226). 
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FIGURE 9. Stokes streamlines at the time of t = 200 (F= 0.95) obtained by the solution of the 
Navier-Stokes equations (Re = lo4). The waves are excited by a local contraction of the tube wall 
given by (17b)  with h = -0.005. Streamlines aredrawn-for yk = 3.125 x x n 2  (0 < n < 40). 
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FIGURE 10. Time development of A = A,(x,  t )  obtained from the solution of the Navier-Stokes 
equations (Re = 10"). The waves are excited by a local contraction of the tube wall given by ( I  7b) with 
h = -0.005. ( a )  F = 0.9; (b) F = 0.95; (c) F = 1.0; ( d )  F = 1.05. The straight lines in ( a )  and (b)  show 
the position of the foremost wave predicted by the linear theory (19). 

large amplitude in a long time if the flow is near resonance. This is because, in the case 
of the tube wall deformation, the radial undulation is scaled by c instead of ell2, as 
shown in (12b). This level of undulation of the tube wall, which corresponds to the 
undulation of 0.25 mm for a tube with a radius of 5 cm, may occur in usual laboratory 
experiments for swirling flows and this suggests the possibility that some results of the 
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FIGURE 11. Time development of A = A , ( x ,  t )  obtained from the solution of the GY equation. The 
waves are excited by a local contraction of the tube wall given by (176) with h = - 0.005. (a) F = 0.9; 
(6)  F =  0.95; (c) F =  1.0; ( d )  F =  1.05. The straight lines in (a )  and (b )  show the position of the 
foremost wave predicted by the linear theory (19). 

previous experiments could be affected by an unexpected and undesirable very small 
undulation of the tube wall. 

In figures 10 and 11, we show the time developments of A = A, (x ,  t )  obtained from 
the solution of the Navier-Stokes equations and the solution of the GY equation. As 
in the case of the waves excited by an obstacle located on the tube axis (figures 4 and 
5) ,  the qualitative agreement is very good, although some quantitative differences are 
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FIGURE 12. Time development of A = A,(x,  t )  when the waves are excited by a local expansion of the 
tube wall given by (17b) with h = 0.005 (Re = lo4, F =  1.0). (a) Navier-Stokes equations; (b)  GY 
equation ( e  = 0.01). 

observed. The qualitative dependence of the wave patterns on the Froude number is 
the same as in figures 4 and 5 ,  the only major difference being the sign of A .  In the 
forcing terms of the GY equation (13a) and (13b), i.e. -j,g2(1 + j i A / ( 2 0 ( ) / 2  and 
(20)Jo( j , )g(  1 +ji Jo('jn)A/12i22)), the terms in parentheses must be always positive 
because of the constraint of (16c). Therefore, the sign of the forcing term is always 
negative in (13a), while it is determined by the sign of J,(j,)g in (13b). The function 
g ( X )  is negative for the contraction of the tube wall, while it is positive for the 
expansion of the tube wall. The value of J o ( j n )  is negative when n is an odd number and 
positive when n is an even number. Then Jo( j , )g  is positive for the contraction ( g  < 0) 
of the tube wall. After all, the sign of the forcing term is always negative for the 
obstacle on the tube axis (figures 3, 4 and 5 ) ,  while it is positive for a contraction of 
the tube wall (figures 9, 10 and 1 1 ) .  In addition, in the weakly nonlinear limit [A(  -0, 
the kernel K(A,  A') asymptotes to one (K(A ,  A') --f 1) and the GY equation becomes the 
fKdV equation as noted by Grimshaw & Yi (1993). Therefore, in the weakly nonlinear 
limit, GY equations (13a) and (13b), respectively, reduce to the fKdV equations with 
a negative and a positive forcing, so that the resultant A(.u, t )  takes the opposite sign, 
at least for the initial time development. 

In figure 12, the time development of A = A , ( s ,  t )  obtained from the Navier-Stokes 
equations and the GY equation are given for the wave excited by a local expansion of 
the tube wall. Here, the value of J o ( j , ) g ( X )  is negative so that the sign of A ( x ,  t )  is the 
same as the waves excited by an obstacle on the tube axis. We see again the agreement 
including the wavelength, although the amplitude is larger in the solution of the GY 
equation. 
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FIGURE 13. Time development of A = A,(x,  E )  obtained by the GY equation (B = 0.01) when the waves 
are excited by a large local contraction of the tube wall given by (176) with h = -0.015 ( F =  1.0). 
Note that in figures 13, 14(b), 17(b) and 19(b), the scale of A is twice that of the previous figures since 
the wave amplitude become large. 

Comparing figure 12(a) with figure lO(c), and figure 12(b) with figure 11 (c), we note 
that, for the same strength of the forcing Ig(X)l with opposite sign (h  = L-0.005 in 
(17b)), the resultant wave amplitude A(x,  t )  has approximately the same modulus and 
the opposite sign everywhere. This is because, in the forcing term of the GY equation 
(13b), j",o(j,)A/12Ql < 1 holds for sufficiently small A ( x ,  t ) .  In the present case, the 
maximum value of IA1 is about 0.16 so that j~Jo(jn)lA~/~2Q~ z 0.25 for n = 1. 
Therefore, the G Y  equation (136) is not susceptible to the simultaneous change 
of g+-g and A - - A  as long as IAl is not so large and K ( A , A ' )  z 1 holds so 
that the GY equation can be approximated by the fKdV equation with weak 
nonlinearity. Of course, as time proceeds and the modulus of the wave amplitude A 
becomes much larger, the similarity between figures 11 (a)  and 9 (c), or figures 11 (b)  and 
lO(c), will become worse. 

From the results for the nearly resonant conditions ( F  z l),  we can say that the GY 
equation describes well the nonlinear behaviour of the inertial waves excited by various 
forcings near resonance. Then, the remaining question is the possibility of predicting 
the onset of the axial flow reversal leading to the generation of the recirculation eddies. 
For this purpose, we use a local contraction of the tube wall. This type of excitation 
is chosen, since the violation of the lower limit of A in (16c) is easier than the violation 
of its upper limit, whose modulus is about 2.5 times larger. In addition, we saw, in the 
results described above, a wave of depression just downstream of the excited position 
has the largest modulus. Then, if its value is negative, we expect that the violation of 
the lower limit is most likely to occur. This is just the case of the local contraction of 
the tube wall that we have seen in figures 10 and 11. Here, we use a contraction whose 
radial amplitude is three times larger than that used in figures 9, 10 and 11 to generate 
the waves of larger amplitude which would lead to an axial flow reversal. As mentioned 
in $2.2, the violation of the lower limit of A ( x ,  t )  causes the flow reversal on the tpbe 
axis ( r  = 0). This is in agreement with the vortex breakdown observed in laboratory 
experiments, although the rotation type is different. In a laboratory experiment for the 
vortex breakdown, local contraction of the tube wall was actually used by Kirkpatrick 
(1965) (see figure 6 of Hall 1972). In that experiment the vortex breakdown occurred 
where the tube radius was nearly minimum. 

In figure 13 the solution of the G Y  equation is shown until the flow reversal occurs. 
The minimum of A occurs just downstream of the excited position and it reaches the 
lower limit of (16), i.e. A ( = - CJj1 = -0.26) at t = 92.45 near .x = 4, which would 
lead to the axial flow reversal on the tube axis. Therefore, further time development is 
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FIGURE 14. (a) Stokes streamlines at time t = 200 obtained from the solution of the Navier-Stokes 
equations when the waves are excited by a large local contraction of the tube wall given by (17b) with 
h = -0.015 (Re  = lo5, F = 1.0). Streamlines are drawn for @ = 3.125 x x n 2  (0 < n < 40). ( b )  
Time development of A = A,(.u, t )  obtained from the solution of the Navier-Stokes equations. 

impossible as discussed in 52.2. On the contrary, in the solution of the Navier-Stokes 
equations for Re = lo5 (figure 14b), the minimum value of A decreases continuously 
until it reaches about -0.3 at t = 200. This is because, even when the axial flow 
reversal occurs, A can still be calculated by (20b). The comparison of figure 13 with 
figure 14(b), shows that the agreement between the solution of the Navier-Stokes 
equations and the GY equation is good until the lower limit of A is violated in the 
solution of the GY equation, except that the amplitude is somewhat larger in the 
solution of the GY equation. In the solution of the Navier-Stokes equations, axial flow 
reversal occurs at about t = 140. The onset time is later than the prediction of the 
Grimshaw-Yi equation because IAl is smaller. The prediction of the onset time of the 
axial flow reversal is difficult, however, since the growing rate of the wave amplitude 
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FIGURE 15. Time development of the Stokes streamlines in the recirculation eddies obtained from the 
solution of the Navier-Stokes equations when the waves are excited by a large local contraction of 
the tube wall given by (17b) with h = -0.015 (Re = lo5, F =  1.0). Streamlines are drawn for 
$ = 3.125 x x n2 (0 < n < 20): ( a )  t = 140; ( b )  t = 150; (c) t = 160; ( d )  t = 170; ( e )  t = 200. 
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FIGURE 16. The contours of the circulation r = rw at time t = 300 obtained from the solution of the 
Navier-Stokes equations when the waves are excited by a large local contraction of the tube wall 
given by (17b) with h = -0.015 (Re = lOj, F = 1.0). 

significantly decreases with time and a small difference in the amplitude leads to a 
rather large difference in the onset time of flow reversal (cf. $2.2). Therefore, we can 
say that the agreement is good. 

To illustrate the typical flow patterns when the flow reversal occurred, streamlines 
at the final time of the computation is shown in figure 14(a). We see that an ‘eddy’ is 
formed under the largest wave (0 < r < 0.3 and 4 < .x < 7). Note here that the eddy is 
actually not narrow but long in the axial direction since the figure is reduced a 100 
times in that direction. The onset position of the recirculation eddy (x = 4.4, cf. figure 
15a) agrees well with the prediction by the GY equation. 

To see the time development of the recirculation eddies, streamlines near the tube 
axis which are more enlarged in the axial direction are shown in figure 15. Initially, a 
small eddy is formed on the tube axis at .Y = 4.4. The first eddy becomes larger until 
the second eddy ( t  > 170) penetrates beneath the first eddy. We should note that once 
the reversed axial flow occurs, it develops into a large eddy in a much shorter time 
(I40 < t < 160) than the time required for the onset of flow reversal. This qualitatively 
agrees with the laboratory experiments which reported a ‘sudden ’ occurrence of the 
vortex breakdown. The flow in the breakdown bubble is highly unsteady. The 
unsteadiness could also be identified by the comparison of the contours of circulation 
(T = rw) with the Stokes streamlines as mentioned in $2. The contours of the 
circulation r which correspond to the streamlines shown in figure 14(a) are presented 
in figure 16. Outside the recirculation eddy, the unsteadiness is small and the contours 
of r and the streamlines coincide well, while in the recirculation region, they differ 
significantly owing mainly to the unsteadiness of the eddies. 

We also note here that the pattern of the eddy structure given in figure 15(d), 
e(t = 170, 200) is similar to the mean-streamline pattern obtained experimentally by 
Faler & Leibovich (1978) (see their figure 10). In their figure, a ‘two-celled’ structure 
is seen in the bubble interior and the outer cell is much stronger than the inner cell. 
These agree with the present results, although their experiments are carried out in a 
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FIGURE 17. ( u )  Stokes streamlines a t  time t = 200 obtained from the solution of the Navier-Stokes 
equations when the waves are excited by a large local contraction of the tube wall given by (17h)  with 
h = -0.015 (Re  = lo4, F = 1.0). Streamlines are drawn for yk = 3.125 x x n p  (0 < tz < 40). (h)  
Time development of A = A,(.u, t )  obtained from the solution of the Navier-Stokes equations. 

monotonically diverging duct using a very different upstream velocity distribution 
(with a shear in the axial velocity and with a swirl of Burgers-vortex type). The 
resemblance suggests that the interior structure of the vortex breakdown is rather 
insensitive to the details of the upstream flow velocity distributions. We should also 
note that, although the vortex breakdown bubbles observed in the experiments are not 
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axisymmetric (Leibovich 1991), the flow may be nearly axisyminetric until the flow 
reversal occurs as observed in the experiments (Maxworthy, Hopfinger & Redekopp 
1985), and the onset of the recirculation eddies would be predicted by the GY equation. 

We note that the structures of the recirculation eddies were almost independent of 
the Reynolds number for higher Reynolds numbers. Even the inviscid simulation using 
the Euler equations gave similar eddy structures, although the results are not included 
here. Then, to investigate the effect of viscosity on the generation and the time 
development of the recirculation eddies, Navier-Stokes equations were solved for two 
much lower Reynolds numbers Re = lo4 and lo3. When Re = lo4 (figures 17 and 18) 
the flow reversal occurs at t = 175 (figure 18u) and the recirculation eddy grows until 
t z 250 (figure l8c). However, it shrinks again until the end of the computation 
( t  = 400, figure 18e). This suggests that Re = lo4 is on the verge of the generation of 
recirculation eddies and at the same time this illustrates the subtleness of the 
phenomena. Figure 17(b) shows that, although the length of the first negative region 
of A (0 < .Y < 10) becomes longer with time, the minimum (negative) value of A stops 
a further decrease for t 2 200 and remains constant ( A  = -0.27). This is the reason 
why the recirculation eddies were not strengthened any more. 

It is important to note that the recirculation eddies, which are local phenomena, are 
largely determined by the global structure of the inertial wave and the very slight 
changes in the large-scale waves result in a large difference in the time development and 
the structure of the recirculation eddies. This illustrates the severe subtleness in the 
problem of the vortex breakdown, if the vortex breakdown observed in the experiments 
are essentially generated by the inertial waves. 

Finally, the results for the case of Re = lo3 are presented in figure 19. In this case 
the flow becomes completely ‘steady’ after t z 200 and the flow reversal does not occur 
because the wave amplitude A maintained a constant value. A similar steady solution 
has been obtained by Smyth (1988, see his figure lob) in the solution of the 
fKdV-Burgers equation with a negative forcing which corresponds to the tube wall 
contraction in this study. In the case of the fKdV-Burgers equation, the amplitude 
stops time development if the viscosity is sufficiently large. Our results are for uniform 
rotation which are not described by the fKdV-Burgers equation. However, similar 
viscosity effects can be expected since the GY equation reduces to the K d V  equation 
in the weakly nonlinear limit (see 93.2). The recirculation eddies appear only when the 
Reynolds number is sufficiently large, although the lowest limit for the flow reversal 
depends on the strength of the excitation source and the Froude number. This 
qualitatively agrees with the laboratory experiments for the vortex breakdown where 
axisymmetric or ‘bubble type’ breakdowns were observed only at high Reynolds 
numbers (typically Re > 10’). 

5 .  Conclusions 
We have investigated the fundamental linear and nonlinear aspects of the inertial 

waves excited by the topographic forcings. When the flow is subcritical, the excited 
waves have many linear aspects, including the speed of the upstream-advancing wave 
and the wavelength of the standing lee waves. The shortest wavelength components 
which can appear upstream of the obstacle were also identified. It was also confirmed 
that the second mode ( n  = 2) is not excited until that mode becomes near resonance. 

We found that when the flow is near the critical (resonant) condition of the first 
mode ( n  = l),  the waves are dominated by the first mode and are described well by the 
Grimshaw-Yi equation for the first mode. The equation could describe the time 
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FIGURE 18. Time development of the Stokes streamlines in the recirculation eddies obtained from the 
solution of the Navier-Stokes equations when the waves are excited by a large local contraction of 
the tube wall given by (176) with h = -0.015 (Re = lo4, F =  1.0). Streamlines are drawn for 
$ = 3.125 x x n2 (0  < n ,< 20): (a)  t = 175; ( h )  t = 200; (c) t = 250; ( d )  t = 300; ( e )  t = 400. 
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development of the mode n = 1 wave irrespective of whether the waves are excited by 
the obstacle on the tube axis or by the local expansion/contraction of the tube wall. 
Even when the wave amplitude becomes large enough to cause flow reversal, the 
Grimshaw-Yi equation was found to be useful in many respects. It predicts the 
location of the breakdown accurately although the prediction of the exact time of its 
occurrence is difficult since the growth rate of the wave amplitude becomes much 
smaller as the wave amplitude approaches the limit value necessary for the onset of 
flow reversal. In this study, local contraction of the tube wall was used to investigate 
the generation and the time development of the recirculation eddies, since it was found 
in the course of this study that the violation of the wave-amplitude limit necessary for 
the axial flow reversal most easily occurs in this case. The unsteadiness in the 
recirculation region was found to be much larger compared to the flow around it. 

The structures of the recirculation eddies are affected by the change of the Reynolds 
number if the Reynolds number is not very large ( R e d  lo5). When the Reynolds 
number is small (Re = lo3), the flow becomes steady without leading to a flow reversal, 
although the lowest limit Reynolds number for the generation of the recirculation 
eddies must depend on the Froude number and the strength of the excitation source, 
i.e. the size of an obstacle or a tube deformation. 

The main purpose of this paper is in the investigation of the fundamental linear and 
nonlinear aspects of the waves excited in uniformly rotating flows and not in the precise 
reproduction of the vortex breakdown phenomena which have been observed in the 
previous experiments. However, if the essential aspects of the vortex breakdown are in 
the ‘inertial waves’, we can say that the essential mechanism of the vortex breakdown 
is included in this study. Only when the flow is near critical (resonant) conditions, are 
large-amplitude waves excited causing the flow reversal which forms the recirculation 
eddies. The structure of the recirculation eddies, i.e. the two-celled structure, was 
similar to the experiments although the upstream velocity distribution was different. It 
is necessary to study the case of non-uniform (e.g. Burgers-vortex type) rotation to 
investigate further the direct relation to the vortex breakdowns observed in 
experiments. 

In a future numerical study of the vortex breakdown, precise reproduction of the 
phenomena using exactly the same conditions as the laboratory experiments is 
necessary, since most of the previous studies used a straight tube, which is different 
from the experiments. However, even if it were done, theoretical interpretation of the 
results would still be difficult for a ‘diverging’ tube, since the tube radius and the axial 
flow velocity changes along the flow and the construction of the wave theory becomes 
difficult (Faler & Leibovich 1978). The Grimshaw-Yi equation, of course, has 
limitations in its applicability conditions. For example, it can be applied only to the 
‘localized’ topographic effects and not to the diverging tube. However, this is the only 
existing strongly nonlinear theory for the inertial wave, and this numerical study is an 
illustration of the ‘wave’ mechanism for the generation of the recirculation eddies, 
including the test of the applicability of the GY equation. The vortex breakdown may 
have its origin in the instability of the flow, and its possibility should be investigated 
separately. The investigation of each mechanism should be done before the precise 
numerical reproductions of the vortex breakdowns are done, so that the mechanisms 
of the phenomena become clear. The investigation of the non-axisymmetric effects 
using three-dimensional Navier-Stokes equations would also be important to 
investigate the time development of the recirculation eddies, since it is affected largely 
by the non-axisymmetric effects. 
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Appendix 
We have used the MAC (marker and cell) method commonly used for the 

incompressible fluid flows. We use an upwind scheme of third-order accuracy for the 
nonlinear terms (Kawamura, Takami & Kuwahara 1986) and a central difference of 
second-order accuracy for all the other space derivatives. We use the body-fitted 
curvilinear coordinates (Thames et ul. 1977) to accurately incorporate the effect of the 
boundary deformation. 

The grid spacing is A x  = 0.0625 where - 5  < .x < 5 ,  and becomes gradually larger 
where 1x1 > 5.  To describe the boundary deformation accurately, the grid points are 
concentrated toward both the tube axis and the tube wall. The minimum grid spacing 
is about Ar = 2.5 x lop3 (at r = 0 and r = 1) and becomes gradually large toward 
r = 0.5. 

To be explicit, the grid is given by 

x ( I )  = - 5 - ( - 5 - x m t n ) -  170-'( 1 
170 

I -  170 
= -5+  10- 

160 

= 5 + ( X m a s  - 5 )  I- 330 (1 - tanh 
I,,, - 330 

and 

r ( J )  = r z n  +(0.5-rz71)- 'J (1 -tanh 
J m  a s  

- 
- rout - ( rout  - 

J ,  a s  

where 

(0 d I < 170), (A  1) 

(170 ,< I ,< 330), (A 2) 

(330 d I d (A 3 )  

-xmin = -40, s,,, = 60, I,,, = 650, J,,, = 100, r in  = r (J  = 0 ) ,  

rout = r(J  = J,,,). 

For the time development, explicit Euler method of first-order accuracy was used. The 
value of At is At = 0.002 when there is no flow reversal and At = 0.001 when there is 
a flow reversal. This is because the unsteadiness is larger inside the recirculation eddies. 
Then the computation was done typically until t = 200. Then, the number of timesteps 

FIGURE 19. ( a )  Stokes streamlines a t  time t = 400 obtained from the solution of the Navier-Stokes 
equations when the waves are excited by a large local contraction of the tube wall given by (17b) with 
h = -0.015 ( R e  = los, F = 1.0). Streamlines are drawn for @ = 3.115 x < n2 ( 0  < n < 40). ( b )  
Time development of '4 = .41(x, t )  obtained from the solution of the Navier-Stokes equations. 
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was typically lo5. Typical CPU time for each calculation on NEC SX-3 (5GFlops on 
single processor) were 30 min if we use At = 0.002 and 1 h if we use At = 0.001. 

The numerical accuracy was checked using the case of Re = lo5, with the tube 
contraction given by (176) ( h  = -0.015) since this case has the largest wave amplitude 
and then the strongest recirculation eddies are generated. In addition, this case has the 
largest Reynolds number in this study and the effect of the numerical errors should 
appear most seriously. It was found that the effect of the further reduction in A x  was 
completely negligible since the halving of the values of A x  given by (A 1)-(A 3), i.e. the 
use of Imas = 1300, gave no quantitative differences. The effect of halving the size of 
Ar, i.e. the use of J,,, = 200, was also negligibly small. Note also that the number of 
radial grid points (=  100) are originally several times larger than the previous 
numerical studies for the vortex breakdown, in which typically 30 points were used. On 
the other hand, the effect of the reduction of At was a little problematic. The values 
used in this study (At = 0.002, 0.001) are much smaller than those used in the 
previous numerical studies for the unsteady vortex breakdown, where it was typically 
At = 0.024.04. However, the strength of the recirculation eddies still had some 
sensitivities to the further reduction of At .  For example, the use of At = 0.0005 gave 
the strength of the recirculation eddies still weaker than that obtained with At = 0.001 
presumably because the numerical viscosity has been reduced and the numerical 
vorticity generation was reduced. However, the patterns of the eddy structure were 
unchanged so we can say the results given in figure 15 are reliable at least in the 
‘fundamental’ eddy structure. We should also note that the wave amplitude A ,  was 
altered only slightly by the reduction of At. Then, except for the strength of the 
recirculation eddy (if it exists), the reduction of At does not give meaningful changes 
to the results. The use of the Crank-Nicholson method, which has second-order 
accuracy in time, did not change the results quantitatively, showing that this is a rather 
subtle problem of numerical errors which cannot be implemented by simply using the 
higher-order time-integration scheme. 
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